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A CONSEQUENCE OF THE INVARIANCE OF THE GAUSS PRINCIPLE"

V.A. VUJICIC

The invariant form of the Gauss principle of least compulsion in the
space of positions of a system with constraints (some of which may be
non-holonomic) is considered. A modified construction of the compulsion
function in configuration space is proposed. The modified expression
contains information on the constraints. From the complete system of
differential equations, equations are obtained for finding the reactions
of the constraints. An example of the use of this approach is given.

Manay authors, see /1, 2/, have considered the analytic form of the Gauss principle.
However, there is still no standard treatment of the principle in analytical dynamics. For
instance, it is said in /3/, p.192, that "the Gauss principle ... does not have the analytical
advantages of other principles", and "is of less value than the principle at least action
(/3/, p-134). oOther authors (/4/, p.219) say that the "Gibbs-Appell equations (with which
the Gauss principle is closely linked) represent the simplest and at the same time the most
general form of the equations of motion". Yet, though these equations are closely linked with
the principle of least compulsion, they do not contain the compulsion function
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but the Gibbs-Appell function
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where m, is the mass of the v -th point of the system, gz, are the coordinates of the acceler-
ation vector, and X, are the coordinate of the vector of forces in a rectangular orthogonal
system of coordinates.
Apart from these inconsistencies, there are difficulties in introducing the generalized
Lagrange coordinates, in which
=85 —Qu™ (0.3)
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where @, are the generalized forces. Functions (0.l1) and (0.3) are not the same and are not
invariant.
The quadratic form of the Gauss compulsion in configuration space is obtained in /5/:
22% = g5 (a® — Q%) (a — %) (0.4)

where &y Bre the coordinates of the metric tensor, % are the coordinates of the acceleration
vector, and @, are the corresponding generalized forces. From the Gauss principle we easily
obtian the differential equations of motion for a holonomic mechanical system:
0Z*[8a* = () (0.5)
or a non-holonomic mechanical system:
az*(oa" 4-¢,° 9Z#/3a° = 0

(0.6)
Here,

o = Dg¥dt =g "% 1 Tey LA (0.7)

But (0.4) is not the same as the Gauss compulsion (0.l), since (0.4) does not contain
components of the accelerations a, of vectors of the forces F,, orthogonal to the configuration
space.

1. cConsider the motion of a system of N practicles with masses m, v=1,...,N), con-
strained by ideal scleronomic holonomic constraints
fo(ty .. ,ea) =0 (oc=1, ...,k 1.1)
where ry, is the position vector of the point My. Let z',z% ... 28N be the particle

coordinates in a curvilinear system of coordinates. Accordingly, the masses of particles M,
are naturally written as mgy., = mg-; = Mgy, and the constraints (l.1l) as

folat, 2, ..., 2%, 2", L a9V =0 (1.2)
or in parametric form
ty==1ty (T}, ... 2%V) Ixcr:xo'(xk+l, .., x3Y)
We agree to denote k coordinates by ',..., zF, and the rest by ¢* (@ =1,...,n =3N.— k),
so that
te="0u(g% ..., g™ 2, ..., 2F) 1.3)

This means that the dimensionality of the configuration space £E,, is n 4+ k. Denote
the basis vectors of the subspace R, C E,, by &v. = 0ry/0g* and of the subspace E; C Eyv by
ey =010z (@ =1,...,n i =1,... k).

The coordinate system is chosen so that the equations of the constraints are

fo =% —¢; =0 (co = const) (1"4)

In space E,. there act at point M,,in addition to the active forces F,, the imposed
constraints (1.2); we replace then by the reactions R,. The principal vector of the forces
at the point M, is then

F,°=F, + R, (1.5)

We resolve the acceleration and force vectors into their components in the coordinate
system:
ay = %y + ai'ewi (1.6)
F,/m,= Qagvc: + F.;.viv Ry/m, = Riewi
where Q% are the contravariant coordinates of the generalized forces in the n-dimensional
confiquration space M,, F; are the covariant coordinates of the forces in subspace E;, and

a% ., G are the corresponding coordinates of the acceleration vectors.
By definition, the Gauss compulsion is

RS F,°\?
z=_.2_2mv<av— ”jv) .7

In the orthogonal Cartesian system of coordinates !, 3%, §° with basis vectors e, e, €3
in which F,° =Y.,%e,, ay = yv' '°¢;, compulsion (1.9) becomes
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q i LI - le N2
2= Y m (W)
v=1 8=1 v
or in index notation
2Z =8, (yx — YNy — Y™ (t.8)
[ 0, y=% . Y. X
Gx—‘:mxex-ele My, =2 Y= m,
We substitute (1.6) into (1.7). Then,
N .
2Z = él my [(3® — Q%) gva + (a: — F; — R)e ' P= 1.9)
N N
2 my[(a*— Q) gval* + 3 my[(ai — Xidev'I?
v=1 v=1
since the scalar product of the vectors g,, and e,tis zero and X, = F; + R, .,
We introduce the notation
fop = Zi Mollve Bty Bva = Ors/0g* (1.10)
fui = 2 MBya-eviy eyi=dry/dx’ (1.19)
eijngm'\evi'ev'7 (112)
Since
2 m, [{(a* — Q%)gve]t = ; Moy Lup (% — Q%) (ab — QF)
Evl my ((a; — Xi)ey 2= gy meete, (@ — X)) {a;— X))
the compulsion (1.9) can be reduced to the form

22 = gap (a* — Q%) (a# — Q%) +e¥ (a;— Fi — Ri) (4 — F; — R)) (1.13)

Expression (1.13) for the Gauss compulsion is equivalent to (1.7), (1.8); it is invariant,

since (1.13) can be reduced to the form (1.8), i.e.,
2Z = gy, (a% — F*%) (a* — F™)
Notice that (1.13) includes all the coordinates of the vectors of the acceleration g% =
q"* 4 Tgy*¢’Pg¥ and forces Q% referred to the configuration space M,, and the covariant
coordinates of the acceleration a; = ey; (¢’ + Ty, z%z™) and force X,, belonging to space K
Comparing (1.13) and (0.4), we can see that the invariant Gauss compulsion is more general
than the compulsion (0.4) in the configuration space M,,since Z = Z* 4 Z** 6 where

2Z** —e¥ (a; — F; — R)) (a; — F; — R))
This addition to (0.4) does not change the differential equations of motion (0.5) and

(0.6), since
8Z*/oa> = 0Z/9a*

Incidentally, the Gauss principle with compulsion (1.13) gives a greater number of

equations than (0.6), i.e., greater than the number of degrees of freedom'of the system.
Starting from the fact that the first variation of the function Z in the Gauss sense (6g =

8¢ =0, 6z =8z = 0) is zero:

8Z = (0Z/3a%) 6a* + (3Z/8ay) bay = 0 (1.14)
we obtain n equations of the covariant type (0.5)
0Z/0a* =0 (@ =1,...,n) (1.15)
and a further k equations of the contravariant type
(1 16)

0Z{da; =0 (i=1,...,k)
(see e.qg., /6/, p.85).
Egs. {1.16) are a consequence of relation (1.14), or due to the fact that the constraints
are replaced by the forces R, and all the variations of the accelerations &a* and §&a; are
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assumed independent, or in accordance with the method of undetermined lLagrange multipliers in
the light of constraints (1.2), satisfy the conditions

®
El 1oVijobat = R;8a* =0 (1.47)
Exi

In this case the reactions R, do not appear explicitly in (1.13), which takes the form

2Z,==gop (a* — Q) (aP — Qf) +e* (@i — F\) (¢, — F)) (1-18)
Using (1.14) and (1.17), we can write (1.16) as
0Z,/0a; = R, (119

Since constraints of the type 2’ ==¢ do not appear explicitly in {1.15), this system
is equivalent to a lLagrange independent differential equation of the second kind. The re-
maining k equations of (1.16) and (1.19) form the part of the Lagrange equations of the first
kind from which all the reactions of the holonomic constraints can be found.

2. The Gibbs-Appell function

]

N
C dv, dv.

S=p Vimgte @1
v=]1

can be reduced by means of (1.5), (1.9), (1.10}, and (1.12), to the form
28 = gaga“aﬁ -{-e"a;a,— \22)

The Gauss compulsion (1,13} can be written as
22 == gapa®aP +eVa;a; — 2 (gapa®QP +eYa;X)) + 20 (2.3)
20 = gaﬁQ"‘O“ +e"iniXi= 2D (2, 9y §5 T)x=const

(20 is a quadratic form of the generalized forces, and is a function of the coordinates which
generalize the velocities and time). Comparing (2.2} and (2.3), we obtain

Z =8 — gepa®Qh —eij(lin + @ (2.4)
From (1.15) we can now obtain the differential equations
8S/8a* — gogQ® = 0 (2.5)
These are Appell's differential equations of motion
88/8¢" = Qg {2.6)
for a holonomic system, since, by (0.7),
05 .05 6a* 05 5o 05 @70
og ® 3> 64 B 9a* Gy == aab
8agQ®==Qy

~ We cannot reduce (1.16) or (1.19) to Appell's form, since, for the constraints considered
2"t = 0 and the partial derivative @85/02" becomes meaningless.

3. In addition to the holonomic constraints (1.1) on the system of particles, let a
further ! non-holonomic constraints

Pullrr o T3 Vi -0 V) =0 (=14, ..., 1<) GRY
be imposed, whence we obtain the relations for the accelerations
ay-grady @ + O (v, 1) =0
The equations in Gauss variations are
Say-grady gu =0 {3.2)
Substituting (1.6) into {3.2), we obtain the [ relatioms
buaSa™ 4 8,'6a;==0 {3.3)

N N
bua= \-2'1 Evar grads, Pu, b“i = \.Elew{ -grad, Gu
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Using the method of undetermined Lagrange multipliers, we obtain from (3.3) and (1.14)
the n 4+ k equations of motion of the non-holonomic system

[3
0Z[0a*= 3\ Mbye 3.4)
Wz

[
0Z/da; = 3 hb,t (3.5)
u=t

On rewriting (3.3) as
bupbar -+ bygba? + b,%8a; (p=1,....01; p=1+1,...,n)
we can find under the condition |, |#0 the dependent variations
ba¥ = ¢ M8a? + bHiba, {3.6)
et == bppbPH, pui — b‘_ibpu; hPt = Bou /| boy [

where Bj. is the cofactor of element byu.
Substituting (3.6) into (l1.14), we obtain

oz ., oz 9z . 02
( +cpum-)6a”+(7-i-+b“;a?)6ai=0

8a® a

Hence follow the n 4k — | equations of motion of the non-homonomic system

AZ 8z

"aa—p-f-cp P =0 (@w=1,...L p=l+1,..,n) 3.7
-7/ . 8Z .

32 +b’"EE=O t=1,2,...k (3.8)

We can write Egs. (3.7) and (3.8) with the aid of the Gibbs-Appell function

a8 as

aaP =0, — ¢! ( aar Qu) -89
a8 i : as .

e =F 4 R b (W—QH) (3.10)

From these equations or the equations of motion (3.4) we obtain the explicit form of the
Lagrange equations with multipliers

¢
das (@ + Thog¥g®) = Q¢ +- Ex Apbua

Egs. (3.5), (3.10) or (3.8) indicate the dependent of the reactions
RY =Tipq@q® — F* + bi* (2 — Qu)
on the multipliers bi# of the non-holonomic constraints (3.6). Clearly, if all the elements
bin are zero, then the non-holonomic constraints do not influence the size of the reactions
of the holonomic constraints.
, As an exmaple, consider the motion of a heavy sphere of mass m and radius r, with a
fixed vertical cylinder of radius R >r that cannot slip through onto its interior surface.

In cylindrical coordinates a2'=p,¢*= 1y, ¢ =7 with the Euler angles ¢ = ¢, ¢*=19,¢*=0, the
non-holonomic constraints are given by

R—r)y +r - rep-cosf=0

" —r8 sin(p—y)—re sinBceos(p —y) =0
We define the generalized forces

Fo=10; Q= 0Qy=0Qp=0g=0; ;= —mg

and the metric tensor

4 0
"gxn":”() B
7 Jcos® O

A =diag {m, mp* m}, B=| Jcos8 J 0
0 0 7
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where J is the moment of inertia of the sphere.
The compulsion function (1.13)
3Z =et (g — Fy — R+ gy (6% ~ 0% (o — By
is equal to
(ay — Ry)*m + aga® -+ (25 + me) (a® -+ g) + @408 + a5a° + agat
The differential Egs.(3.4) are obtained by simple differentiation; for example,
0Z/8a® = a3 = X (R = 1)
where g4,= y. We obtain five covariant equations
= (EB—1), o+ mg=rh
@ == Ayr c05 6 — A, r sin 8 cos (P —-%)
ay = hyr, ag = —Ayr sin (p —%)
or, using Egs.(3.7),
O = ey (R—1r)/r, ag = —(ay + mg) rsin ($ — )
g = 0y, €03 6 — (a; -} mg) rsin 0 cos (B — %)
Here,
s =mR =2y, ay=Jd/dt "+ ¢ c0s8), ap = m{*
a, = Jd/dt (' 4 ¢ cos 8), ag = J (8" + ¢P sin H)
Eq. (3.5), corresponding to the coordinate =z!= const
8Z/day = & (ay — Ry} = Ryby} - Ay
gives the expression for the reaction

Ry=o0 =a,= —-mifx‘.’
Here we note that

byt = bt = 0, p = Ay = qﬁ‘lq'aq.ﬁ = I‘gg,lq"&f’ = _mPX'Xf
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