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OF THE INVARIANCE OF THE GAUSS PRINCIPLE* 

V.A. WJICIC 

Manay 

The invariant form of the Gauss principle of least compulsion in the 
space of positions of a system with constraints (some of which may be 
non-holonomic) is considered. A modified construction of the compulsion 
function in configuration space is proposed. The modified expression 
contains information on the constraints. From the complete system of 
differential equations, equations are obtained for finding the reactions 
of the constraints. An example of the use of this approach is given. 

authors, see /l, 2/, have considered the analytic form of the Gauss principle. 
However, there is still no standard treatment of the principle in analytical dynamics. For 
instance, it is said in /3/, p.192, that "the Gauss principle .._ does not have the analytical 
advantages of other principles", and "is of less value than the principle at least action 
t/3/, p-134). Other authors c/4/, p.219) say that the "Gibbs-Appell equations (with which 
the Gauss principle is closely linked) represent the simplest and at the same time the most 
general form of the equations of motion". Yet, though these equations are closely linked with 
the principle of least compulsion, they do not contain the compulsion function 

but the Gibbs-Appell function 

r 
(0.1) 

(0.2) 

where m,is the mass of the v -th point of the system, xv" are the coordinates of the acceler- 
ation vector, and X., are the coordinate of the vector of forces in a rectangular orthogonal 
system of coordinates. 

Apart from these inconsistencies, there are difficulties in introducing the generalized 
Lagrange coordinates, in which 

z = S - Qaq"a (0.3) 

l Prikl.Matem.Mekhan.,51,5,735-740,1987 
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where Qa are the generalized forces. Functions (0.1) and (0.3) are not the same and are not 
invariant. 

The quadratic form of the Gauss compulsion in configuration space is obtained in /5/: 

2z* z g,R(aa- Q")(J'-- q';) (O./i) 

where gar,, are the coordinates of the metric tensor, aa are the coordinates of the acceleration 
vector, and Qaare the corresponding generalized forces. From the Gauss principle we easily 
obtian the differential equations of motion for a holonomic mechanical system: 

dZ'/&P = 0 (0.5) 

or a non-holonomic mechanical system: 

az*/aP + cpO az*jaS = 0 
P.6) 

Here, 

aa = Dq’“/dt = q”a + r;,, q’fiq’V (0.7) 

But (0.4) is not the same as the Gauss compulsion (O.l), since (0.4) does not contain 
components of the accelerations aV of vectors of the forces F,, orthogonal to the configuration 
space. 

1. Consider the motion of a system of N practicles with masses %(v = l,...,iV), con- 
strained by ideal scleronomic holonomic constraints 

f. (rll . . ., r,v) = 0 @=I, . ..( k) (1.1) 

where r, is the position vector of the point MV. Let x1,x2, . . . $N be the particle 
coordinates in a curvilinear system of coordinates. Accordingly, the masses of particles M, 
are naturally written as fn3V-z = nz3V-1 = mgv, and the constraints (1.1) as 

fU(X', 22, . . .( xX, xRfl, . . . LX?")=0 (1.2) 

or in parametric form 

rV=t,(51, . f @) (&O(xR+l , . . . Z3Y) 

We agree to denote k coordinates by x',...,xk, and the rest by p(a = I,.. .,n = 3N,-k), 
so that 

r"= r,,(q', . ., qm; 21, . . .( xk) (1.3) 

This means that the dimensionality of the configuration space E,,+r is n f k. Denote 

the basis vectors of the subspace R, c E,+II by g,, = dr,lL@ and of the subspace Eh.cES~ by 
%i = &,/ax" (a = 1, . . ., n; i = 1, . . .,k). 

The coordinate system is chosen so that the equations of the constraints are 

f0 = XU -- c, = 0 (co = const) (1.4) 

In space En+h. there act at pointM,[in addition to the active forces F,,the imposed 
constraints (1.2); we replace then by the reactions R,. The principal vector of the forces 
at the point M,is then 

F,"=F,+. R, (1.5) 

We resolve the acceleration and force vectors into their components in the coordinate 
system: 

a,=&g,, + u+,~' (1.6) 

FJm\s= Qag, + Pi+, Rv/mv=RiaVi 

where Qa are the contravariant cootiinates of the generalized forces in the n-dimensional 
confiquration space M,,, Fj are the covariant coordinates of the forces in subspace Ek, and 
aa, at are the corresponding coordinates of the acceleration vectors. 

By definition, the Gauss compulsion is 

(1.7) 

In the orthogonal Cartesian system of coordinates y1,y2,yS with basis vectors e,,e,,e,, 
in which F," = Yy" e,, a, = yv”‘esr compulsion (1.9) becomes 
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or in index notation 

We substitute (1.6) into (1.7). Then, 

2Z=,~~m,((a.-4")~~o+(Ui-_~i- Ri)ev(]‘= 

.\- 

since the scalar product of the vectors g, and e,'is zero and Xf = Fi + Rt,, 
We introduce the notation 

hi3 = ? ms:,, -gvB, g,, = ahlap 

gczi = Z mygsa -eti , e vi = ah/a2 
,’ 

eij =X m,e,’ .q,j 
‘I’ 

Since 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

z my W - Q%vale = z wh, .gvB (a= - p) (UP - ~8) 

T m, I(ai - Xi)%'P = F, mvevi .evi (ai - Xi) (U j - Xj) 

the compulsion (1.9) can be reduced to the form 

~Z=~,R(~~-Q~)(U'-QQ~)+~~'(U~- F,FRi) (at- Fj-RI) (1.13) 

Expression (1.13) for the Gauss compulsion is equivalent to (1.71, (1.8); it is invariant, 
since (1.13) can be reduced to the form (1.8)_, i.e., 

22 = g,, (ax - F”r) (ax - F%) 

Notice that (1.13) includes all the coordinates of the vectors of the acceleration aa = 
P"a + rfivaQ'BQ*v and forces Qa,referred to the configuration space M,,and the covariant 
coordinates of the acceleration ai = efj(s"j + I':, r'xr'x) and force Xf,belonging to space Era 
Comparing (1.13) and (0.4) , we can see that the invariant Gauss compulsion is more general 
than the compulsion (0.4) in the configuration space M,,,si.nce 2 =z* + Z**, where 

2Z** =eij (at - Fi - Rf) (al - F, - RI) 

This addition to (0.4) does not change the differential equations of motion (0.5) and 
(0.6), since 

aZ*/aaa = aziaaa 

Incidentally, the Gauss principle with compulsion (1.13) gives a greater number of 
equations than (0.6), i.e., greater than the number of degrees of freedom'of the system. 
Starting from the fact that the first variation of the function Z in the Gauss sense 0% = 
6q’ = 0, 6x = 6~’ = 0) is zero: 

6Z = (aziae) Saa + (azlaa,) 6~~ = 0 (1.14) 

we obtain n equations of the covariant type (0.5) 

azlae = 0 (CC = 1, . . ., n) (1.15) 

and a further k equations of the contravariant type 

aziaa, = 0 (i = I,. . ., k) (1 1’5) 
(see e.g., /6/, p.85). 

EqS.(l.l6) are a consequence of relation (1.14) , or due to the fact that the constraints 
are replaced by the forces R, and all the variations of the accelerations 6aa and 6~8 are 
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assumed independent, or in accordance with the method of undetermined Lagrange multipliers in 
the light of constraints (1.21, satisfy the conditions 

In this case the reactions Ri do not appear explicitly in (1.13), which takes the form 

22,- gafi(@ - Q")(aP- Q") +eij(ai --Pi) (aj - Fj) (1.18) 

Using (1.14) and (1.17), we can write (1.16) as 

~~~~~~ = Ri (1.19) 

Since constraints of the type I= ci do not appear explicitly in (1.151, this system 
is equivalent to a Lagrange independent differential equation of the second kind. The re- 
maining k equations of (1.16) and (1.19) form the part of the Lagrange equations of the first 
kind from which all the reactions of the holonomic constraints can be found. 

2. The Gibbs-AppeL1 function 

can be reduced by means of (1.51, (1.91, (l.lO), and (1.12)‘ to the form 

2S=g,@%ZR +e'jCT$Zj 

The Gauss compulsion (1.13) can be written as 

(2.1) 

4.2) 

(2.3) 

(2@ is a quadratic form of the generalized forces I and is a function of the coordinates which 
generalize the velocities and time). Comparing (2.2) and (2.31, we obtain 

Z--S - gafiaaQfi -ee"jaiXj Jr @ (2.4) 

From (1.15) we can now obtain the differential equations 

dSlaaa - gapQ@ = 0 12.5) 

These are Appell's differential equations of motion 

dSi??q"~ = Qa (2.6) 

for a holonomic system, since, by (0.71, 

as as aP 
"=Gsn"s 
dq p 

(2.7) 

We cannot reduce (1.16) or (1.19) to,Appell's form, since, for the constraints considered 
x"~= Oand, the partial derivative biSlilx*" becomes meaningless. 

3. In addition to the holonomic constraints (1.1) on the system of particles, let a 
further I non-holonomic constraints 

~~(r~,..*,r~;Y~'...,v~)=0 @=L...,I<N (3.1) 

be imposed, whence we obtain the relations for the accelerations 

a,sgradVy'pP + O(v, r)=O 

The equations in Gauss variations are 

Sav.gradVycp,=O 

Substituting (1.6) into (3.21, we obtain the 1 relations 

b&an + b,,‘6ai = 0 
?i 

blla=v~lgm~@~adv,cp~~ hi =v~~@~f~w4vrp~ 

.(3.2) 

(3.3) 



Using the method of undetermined Lagrange multipliers, 
the n +k equations of motion of the non-holonomic system 

On rewriting 

we can find under 

where Bp@ is the 
Substituting 

Hence follow the n+ k- 1 equations of motion of the non-homonomic system 

We can write Eqs.(3.7) and (3.8) with the aid of the Gibbs-Appell function 

(3.3) as 
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we obtain from (3.3) and (1.14) 

.(3.4) 

(3.5) 

b,,haP + b,,6ap + b,%a, (p = 1, . . ., 1; p = 1 + I, . . ., n) 

the condition I b,, I Z 0 the dependent variations 

6ap=cpMaP + bWia, 

c$ z bppbw, bwi = b,,‘bW; hPp = BP,/1 b,, 1 

cofactor of element bpp. 
(3.6) into (1.141, we obtain 

$+cpfi-$-=O @=I,..., 1; p=Z+l,..., n) 

e+b’$$-=O (i=1,2,...,k) 

--$ =Qp-cpb ($ -Qw) 
+F”+R’-bb”s (S-Q”) 

1 

(3.6) 

(3.7) 

(3.8) 

23.9) 

(3.10) 

From these equations or the equations of motion (3.4) we obtain the explicit form of the 
Lagrange equations with multipliers 

Eqs.(3.5), (3.10) or (3.8) indicate the dependent of the reactions 

R' = &g'=q'P - F' + biw (al* - Q,,) 

on the multipliers hip of the non-holonomic constraints (3.6). Clearly, if all the elements 
b'cc are zero, then the non-holonomic constraints do not influence the size of the reactions 
of the holonomic constraints. 

As an exmaple, consider the motion of a heavy sphere of mass m and radius r, with a 
fixed vertical cylinder of radius R>r that cannot slip through onto its interior surface. 
In cylindrical coordinates zl= p,q*= x, pS= 6 with the Euler angles @= q,@=rp,@= 9, the 
non-holonomic constraints are given by 

(R - r) x’ + 3’ + r’p’ cos 0 = 0 

5’ - rl3’ sin (rl, - x) - rrp’ sin ll cos (0 - 1) = 0 

We define the generalized forces 

F, = 0; Qx = Qrp = Q. = Q. = 0; QE = --mg 

and the metric tensor 

A = diag (m, rnpy m}, B= Jcose J I 
J Jcos0 0 

0 

0 0 I I 



where J is the moment of inertia of the sphere. 
The compulsion function (1.13) 

52 =en (IZ~ - F, - S,)*i gafi (8 - Qa) (a8 - @f 

is equal to 

The differential Eqs.(3.4) are obtained by simple differentiationr for example, 

azlw = (I* = A, (R - r) 

where a,= x. We obtain five covariant equations 

ax = 3, (li - r), ng + ng = da 
acp = h,r COs I3 - h, 7 sin fl cOs($ ---x) 

a9 = h,r, ag = --h,r sin (J, -x) 

or, using Eqs.(3.7), 

ax = a$ (R - r)ir, ng = -(as f mg) r sin (* - a) 
U~="~00SO-((a~+m~)rsin9cou(~-x) 

Here, 

ax = m (R - r)l x”, n* = Jdldt (9’ + (p’ cos e), aL = nit 

arp = Jddt (cp’ -j- Ip’ ~0s 6), a8 = J (W’ -j- cp’rp’ sin 8) 

Eq.(3.5), corresponding to the coordinate zl= 00net 

&%3a, = P' (al - R,) = h,b,’ i_ h,b,’ 

gives the expression for the reaction 

Here we note that 

b,l = b,’ F 0, a,, = al = r afi,19’a4’6 = 
. . 

r,,@f = ---mm x 
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